

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Decision Mathematics 1

MARK SCHEME

Specimen Paper

4736

MAXIMUM MARK 72

This mark scheme consists of 4 printed pages.

physicsandmathstutor.com

1	(i)		B1		For correct graph
		K_5 is Eulerian since every node is even	B1	2	For a correct statement
	(ii)	A path is (e.g.) $A-B-C$	B1	1	For any correct path
	(iii)	A cycle is (e.g.) A–B–C–A	B1	1	For any correct cycle
				4	
2	(i)	Using Kruskal's algorithm, the arc of least weight is chosen first and so is certainly included The arc of second least weight is chosen next since just two arcs cannot form a cycle	B1 B1 B1	3	For identifying the first choice For identifying the second choice For correct justification
	(ii)	5 4 3	B1 M1 A1 A1	4	For any connected graph with 4 nodes and at least 3 arcs For including a cycle For a network having the required property For making the minimum connector clear
				7	
3	(i)	1st pass: 6 3 8 3 2 giving 3 6 8 3 2 2nd pass: 3 6 8 3 2 giving 3 6 8 3 2 3rd pass: 3 6 8 3 2 3rd pass: 3 6 8 3 2 3 6 8 3 2 3 6 8 3 2	B1 B1		For correct result of first pass For correct result of second pass
		4th pass: $3 \overline{3} \overline{6} 8 2$ giving $3 \overline{3} \overline{6} 8 2$ $3 \overline{3} \overline{6} 8 2$ $3 \overline{3} \overline{6} 8 2$ $3 \overline{3} \overline{6} 2 8$ $3 \overline{3} 2 \overline{6} 8$	M1 M1		For correct shuttle process in third pass For correct shuttle process in final pass
		<u>3 2</u> 3 6 8 giving 2 3 3 6 8	A1	5	For shuttle sort completed correctly
	(ii)	The number of operations to be carried out, and thus the time to complete the algorithm, is (approximately) proportional to the square of the number of items to be sorted	M1 A1 A1	3	For idea of dependency on 'size' of problem For number of operations, or time required For square of list size
				8	

physicsandmathstutor.com

3

4	(i)	STEP A B C		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 M1	For assigning value to C in first Step 2
		4 24 3 6	MI I	For updating A and B in first Step 4
		2 24 3 30	2.41	
		4 48 1 30		For continuing algorithm and updating C
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ΠΙ	For concernew value 50 for e
		<u>5 48 1 78</u>	A1	5 For correct output
	(ii)	STEP A B C		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	For values of A doubling
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	For values of <i>B</i> halving
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	For output 8A
		<u>3 8A 1 8A</u>		
		6 Output 8 <i>A</i>		
		The output is the product of the inputs	B1	4 For identifying multiplication
				9
5	(i)	A minimum connector on reduced network has	M1	For attempt at a relevant minimum connector
		arcs CE, ED, BD, AB, giving length 23 km	A1	For correct weight 23
		Two shortest arcs from <i>F</i> have weights 7, 8	M1	For identifying the two shortest arcs at F
		Hence lower bound is $23 + 7 + 8 = 38$ km	AI	4 For showing given answer correctly
	(ii)	The best upper bound is 47 km	B1	For the correct answer
		The best lower bound is 40 km	B1	2 For the correct answer
	(iii)	Other orders are CED, DCE, DEC, ECD, EDC	M1	For calculation of at least one other length
		Shortest is ABDCEFA, of length 42 km	A1	For any correct bound less than 47 km
			A1	3 For the correct value 42
	(•)		Ŀ	<u> </u>
6	(i)	$\begin{bmatrix} 2 & 16 \\ 16 & B_T & 11 \\ \hline & & & \\ \end{bmatrix}$		
			2.41	
			MI M1	For correct use of temporary labels For undating F and D
			A1	For all permanent labels correct
		38 14	B1	For correct order of assignment stated
		Least travel time is 40 minutes	B1	For correct value 40
		Route is $A - B - C - D$	B1	6 For correct route
1	 (ii)	The Route Inspection algorithm is used	B1	For stating or implying the correct algorithm
	()	A, B, C and E are odd nodes	B1	For identifying the odd nodes
		AB = 16 AC = 27 AE = 37		
		$CE = \frac{10}{26}$ $BE = \frac{21}{48}$ $BC = \frac{11}{48}$	MI	For pairing odd nodes correctly
		Double up on AB and CE	M1	For selecting appropriate pair for doubling
		Sum of arcs is 172	M1	For adding weights on all the arcs
		Hence shortest time is $172 + 26 = 198$ minutes	A1	6 For correct value 198
1	 (iii)	Nearest neighbour algorithm gives A–B–C–E–D–A	M1	For starting the algorithm correctly, up to C
	、 <i>)</i>	· · · · · · · · · · · · · · · · · · ·	A1	For the correct cycle $A-B-C-E-D-A$
1		Hence required path is A-B-C-E-D	B1	3 For a correct path
1			1	5

physicsandmathstutor.com